Please use this identifier to cite or link to this item: http://hdl.handle.net/11612/4752
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOLIVEIRA JUNIOR, José Carlos de-
dc.contributor.authorGUIDA, Guilherme Silva-
dc.date.accessioned2023-02-09T13:02:00Z-
dc.date.available2023-02-09T13:02:00Z-
dc.date.issued2023-
dc.identifier.citationGUIDA, Guilherme Silva. Configurações de pontos no plano: o teorema de Silvester-Gallai. 2022. 48 f. Trabalho de conclusão de curso em Licenciatura em Matemática, Universidade Federal do Tocantins, Araguaína, 2022.pt_BR
dc.identifier.urihttp://hdl.handle.net/11612/4752-
dc.description.abstractThe present work consists of research in the area of Plane Geometry with an Analytical view, having as main objects of study the primitive elements of Euclidean Plane Geometry, which are the points and the lines. This paper will discuss the demonstrations of two theorems and some curiosities about them. Initially, we will discuss the Sylvester-Gallai theorem, and soon after, we will present a second theorem, which is an application of the first result. To demonstrate each of these results, we use the method of Demonstration by Counterposition and the demonstration by Finite Induction. The present research can be placed in the qualitative research approach, with research procedures of a bibliographical nature. The data analyzed and used as a research base are contained in books and scientific articles, which served as theoretical support for the demonstration of the two central results in a clearer and more didactic way.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherUniversidade Federal do Tocantinspt_BR
dc.rightsACESSO LIVREpt_BR
dc.subjectPontos; Retaspt_BR
dc.subjectGeometria Analíticapt_BR
dc.subjectGeometria Planapt_BR
dc.subjectPlano Cartesianopt_BR
dc.subjectPoints; Linespt_BR
dc.subjectAnalytical Geometrypt_BR
dc.subjectPlane Geometrypt_BR
dc.subjectCartesian Planept_BR
dc.titleConfigurações de pontos no plano: o teorema de Silvester-Gallaipt_BR
dc.typeMonografiapt_BR
dc.description.resumoO presente trabalho consiste em uma pesquisa na área de Geometria Plana com um olhar Analítico, tendo como objetos principais de estudo os elementos primitivos da Geometria Euclidiana Plana, que são os pontos e as retas. Serão abordadas neste trabalho as demonstrações referentes a dois teoremas e algumas curiosidades sobre eles. Inicialmente, discutiremos sobre o teorema de Sylvester-Gallai, e, logo após, apresentaremos um segundo teorema, que é uma das aplicações do primeiro resultado. Para demonstrar cada um desses resultados, utilizamos o método de Demonstração por Contraposição e a demonstração por Indução Finita. A presente pesquisa pode ser inserida na abordagem de pesquisa qualitativa, com procedimentos de investigação de caráter bibliográfico. Os dados analisados e utilizados como base de pesquisa estão contidos em livros e artigos científicos, que serviram de aporte teórico para a demonstração dos dois resultados centrais de uma forma mais clara e didática.pt_BR
dc.publisher.campusAraguaínapt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICApt_BR
dc.publisher.cursoCURSO::ARAGUAÍNA::PRESENCIAL::LICENCIATURA::MATEMÁTICApt_BR
dc.publisher.localAraguaínapt_BR
dc.publisher.levelGraduaçãopt_BR
Appears in Collections:Matemática

Files in This Item:
File Description SizeFormat 
GUILHERME SILVA GUIDA - UFT - MATEMÁTICA.pdf2.28 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.